Introduction to Biophysical Chemistry
 TIGP Academia Sinica Fall 2008 Instructor: Sunney I. Chan

Lecture 20 December 24, 2008

Magnetic Resonance Spectroscopy.

Nuclear Magnetic Resonance. II.

Methods of Nuclear Magnetic Resonance

References: "Methods of Experimental Plyyics," 20, Academic Press, New York, pp 1-52.

CSII, pp. 481-525.
Principles of Magnetic Resonance, C. P. Slichter, Chapters 1 and 2
Nuclear Magnatic Resonance Spectroccopy, R. .. Haris, Pitman Books,
London, 1983, Chapters 1 and 3

1946: Harvard $(F(\omega))$ vs. Stanford $(S(t))$ experiment

Continuous Wave Experiment

A "CW" NMR spectrum is obtained by sweeping the rf frequency or the magnetic field through resonance slowly. In this experiment of is on continuously. However, B_{1} is small, so that only one resonance is excited at a time.

In a frame rotating with angular velocity ω, the "effective field" is given by

$$
\stackrel{\mathrm{B}}{B_{e f f}}=\left(B_{0}+\frac{\omega}{\gamma}\right)^{\mathrm{v}} k+B_{1}{ }^{\mathrm{v}}
$$

Since $\mid \dot{B}_{0}\|\gg\|_{B_{1}}^{v} \|$, when ω is far from $\omega_{0}, \dot{B}_{e f f} \approx \dot{B}_{0}$ and M_{z} is unaffected, while when $\omega \rightarrow \omega_{0}, \dot{B}_{e f f} \approx \dot{B}_{1}$ and absorption occurs.

Far from resonance $\quad \stackrel{\mathrm{V}}{B_{e f f}}=\left(B_{0}+\frac{\omega}{\gamma}\right) \approx B_{0}$

At or near resonance $\quad \stackrel{V}{B_{e f f}}=\left(B_{0}+\frac{\omega}{\gamma}\right)+B_{1} \approx B_{1}$

$F(\omega) \equiv \mathrm{NMR}$ spectrum in frequency domain.

Single-pulse experiment

If

This is usually written as

Single-pulse experiment

Recall

$$
\begin{aligned}
& F(\omega)=\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} S(t) e^{i \omega t} d t \quad \text { and } \\
& S(t)=\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} F(\omega) e^{-i \omega t} d \omega
\end{aligned}
$$

$$
F(\omega)
$$

frequency spectrum

Fourier Transform NMR

Same information in $F(\omega)$ and $S(t)$.

In fact

$$
\begin{aligned}
F(\omega) & =\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} S(t) e^{-i j t} d t \\
S(t) & =\left(\frac{1}{2 \pi}\right)^{1 / 2} \int_{-\infty}^{\infty} F(\omega) e^{i \omega t} d \omega
\end{aligned}
$$

Constraints on rf pulse

1) Must be $\ll T_{2}$
2) Must be short enough to evenly excite all resonances in spectrum. Pulse of length t contains these Fourier components:

Constraints on rf pulse

Recall for a $\frac{\pi}{2}$ pulse, $t=\frac{\pi}{2 \gamma B_{1}}$. We require for uniform excitation that
$\gamma B_{1} \gg 2 \pi \Delta$ where Δ is the spectral width

$$
\text { So } \quad t_{\frac{\pi}{2}} \ll \frac{\pi}{2(2 \pi \Delta)}=\frac{1}{4 \Delta}
$$

Representative numbers:

$$
\begin{aligned}
\frac{t_{\frac{\pi}{2}}}{}=5 \mu s \quad \Delta & \approx 5-10 \mathrm{kHz} \text { for }{ }^{1} \mathrm{H} \\
\Delta & \approx 20 \mathrm{kHz} \text { for }{ }^{13} \mathrm{C}
\end{aligned}
$$

Free-induction Decay

After $\frac{\pi}{2}$ pulse, $M_{x y} \neq 0$, nonequilibrium, so $M_{x y}$ must decay with time. The rate of decay $\left(1 / T_{2}\right)$ depends on how the individual spins that make up the magnetization can get out of phase, and this decay thus depends on
(a) different frequencies of precession of various spins that are excited by if:

$$
\Delta \omega_{0}: \omega_{1}^{0}, \omega_{2}^{0} \mathrm{KK}
$$

(b) magnetic field inhomogeneity over the sample
(c) variations in the precession frequencies due to fluctuations in the local magnetic field at the nucleus: $\Delta \overline{\left(\omega-\omega_{0}\right)^{1}}{ }^{1 / 2}$

Free-induction Decay

In any case, free-induction decay (FID) \equiv NMR spectrum in the time domain. Long T_{2} transform to sharp lines in the frequency domain; short T_{2} 's yield broad lines.

Fourier Transform NMR

Advantage of $S(t)$ it itakes I_{2} to acquire $\quad I_{2} \approx 20-100$ msec for small protons I_{1} per experimentit $I_{1} * 1$ see
so in the time it takes to do a CW experiment, say 250 sec, you can do 250 Fourier transfom experiments.

$$
\frac{8}{N} \text { improvement } N^{112}=(250)^{1 / 2}=16
$$

Fourier Transform NMR

 the simplest oner-pluse experiment:

Spin-lattice Relaxation

After a single pulse $\neq 2 n \pi, M_{z}$ not at thermal equilibrium. Bloch postulated exponential recovery of M_{z} (justified for random isotropic rotational motion) with time constant T_{1} ... also called spin-lattice relaxation time (T_{2} processes are adiabatic ... spin-spin magnetization transfer without loss of energy to surroundings vs. T_{1} processes ... spin system loses energy to surrounding "lattice" as relaxation proceeds). So from Bloch, after a single pulse

$$
\frac{d}{d t} M_{z}=-\frac{\left(M_{z}-M_{0}\right)}{T_{1}}
$$

General solution: $M_{z}(t)-M_{0}=A e^{-t / T_{1}}$. For a π pulse: $M_{z}(t)=\left(1-2 e^{-t / T_{1}}\right) M_{0}$

Spin-lattice Relaxation

Spin-lattice Relaxation

$$
\sqrt{ }(\omega)
$$

frequency spectrum

Spin-lattice Relaxation

Vary τ and stack $F(\omega)$

This is called $\left(\pi_{x^{\prime}}-\tau-\frac{\pi}{2_{x^{\prime}}}-\mathrm{FID}-\mathrm{RD}\right)_{n}$ relaxation delay

Spin-lattice Relaxation

Note that different resonances have different T_{1} 's! For each of the resonances, obtain a curve. Use nonlinear least squares analysis to extract T_{1}.

Another Two-pulse Experiment: "The Spin-Echo"

The Spin-Echo Experiment

The Spin-Echo Experiment

$M_{0}^{d}>M_{0}^{d}>M_{0}^{\prime \prime}$ due to dephasing by fluctuating magnetic fiedis.
Vary rand obtain $S(t, t)$ for a given τ.
The above pulse sequence or experiment can also be wiiten

$$
\left(\frac{\pi}{2} x^{\prime}-\tau-\pi_{x^{\prime}}-\tau-\text { spinecho }-\mathrm{RD}\right)_{n}
$$

This two-pulse experiment is a prelude to 2D NMR.

The Spin-Echo Experiment

The spin echo is a component of many more complicated pulse sequences. By itself, it can be used to measure T_{2}... by varying t and looking at envelope intensity (or signal intensity in $F((0))$. Furthermore, Habin showed an effect of diffision on NMR spectra: in an inhomogeneous field, the spin echo amplitude dimininishes according to:

$$
M(2 \tau)=M_{0} \exp \left[\frac{-2 \tau}{T_{2}}\right] \exp \left[-\gamma\left(\frac{\partial D}{\partial}\right)^{2} \frac{2}{3} D \tau^{3}\right] \text { where } D=\text { diffusion constant }
$$

Random fields: Effects on dephasing of magnetizarion and spin-lattice relaxation

$$
\mathbf{H}(\mathbf{t})=j \mathbf{H}_{\mathbf{x}}(\mathbf{t})+j \mathbf{H}_{\mathbf{y}}(\mathbf{t})+k \mathbf{H}_{\mathbf{z}}(\mathbf{t})
$$

Fourier components of these fluctuating magnetic fields at ω_{0} induce transitions among these energy states and result in spin-lattice relaxation.

Origin of random fields

Any process that produces fluctuating magnetic fields

- Magnetic field homogeneities (modulated by translational diffusion)
- Dipolar fields produced by other spins (modulated by relative motions, including translational and rotational diffusion, and any dynamical physical/chemical process that affects the distances between spins)
- Other interactions with a magnetic component
$H(t)=(1 / 2 \pi) \int a(\omega) \exp i \omega t d \omega$
Contribution to spin-lattice relaxation rate ($1 / \mathrm{T}_{1}$) proportional to $\left|a\left(\omega_{0}\right)\right|^{2}$
at Larmor frequency

Pulsed-Field Gradients

Recently (past 5 years) great use has been made of short duration (i.e. "pulsed") field gradients. A linear gradient applied along the z axis modifies the Larmor frequency for different volume elements along the length of the sample tube:

$$
\begin{aligned}
\omega(z) & =-\gamma\left[B_{0}+B_{g}(z)\right] \\
& =\omega_{0}-\gamma_{z} G \quad \text { where } G \text { is a constant } \propto \text { gradient strength }
\end{aligned}
$$

If $M_{x y} \neq 0$ when the gradient is applied, the spins become "phase-encoded"... their phase $\sqrt{ }(z)$ in the $x y$ plane depends on their location along the z axis:

$$
\phi(z)=\gamma_{z} G t \quad \text { where } t=\text { duration of gradient pulse }
$$

Pulsed-field gradients and phase encoding

$$
+\uparrow B_{g}
$$

pulsed gradient = ZG
so that
$\omega(z)=\omega_{0}+\gamma z G$
Sample: protein solution

Diffusion of small molecules (e.g.,
$\mathrm{H}_{2} \mathrm{O}$) up and down sample rapid and dephases magnetization of these spins

If after the spins of the small molecules have dephased, a reverse pulsedfield gradient is applied, the magnetization of the spins associated with the macromolecules will be refocused. A way to remove strong $\mathrm{H}_{2} \mathrm{O}$ signal.

Pulsed-Field Gradients

The intital 10 p pulse generates transurese magnetization. The first gradient pulse phaseencodes the magenetization. The 180 x of pulse then inverts all spins ... so the second gradient pulse should freverse the phase-encocing whess the molecules diftlse out of their original volume element curing the first echo delay t. This will diminishs the sigands of small molecules preferentially to tiose of big molecules (fince the alter difflise more slowly) ... paticulalaly, this provides a way of eliminating the solvent sigal in aqpeouls solutions of biological macromolecules.

Pulsed-Field Gradients

As an example, a pair of gradients can be combined with a Hahn spin echo to create a diffusion-selective (therefore molecular weight-selective) echo sequence.

Nuclear Dipole-Dipole Interaction

 Detection of fis initeaction is seidence for spatial proximity of the spins (neasurex)le for distances ≤ 5 A)

Nuclear Dipole-Dipole Interaction

Let's call A spin J and X spin S. . . conventional nomenclature for what follows.

$$
\left.\begin{array}{rl}
E_{d d} & =\frac{\mathrm{V} \cdot \mathrm{M} \cdot \mu_{X}}{R^{3}}-\frac{3\left(\mu_{A} \cdot R\right)\left(R \cdot \mu_{X}\right)}{R^{5}} \\
& =\gamma^{2} \mathrm{~h}^{2}\left[\frac{\mathrm{~V}}{\mathrm{I}_{A} \cdot I_{X}}\right. \\
R^{3} & \left.\frac{3\left(\frac{I_{A}}{\mathrm{~V}} \cdot R\right)(\mathrm{V} \cdot \mathrm{~V}}{R_{X}}\right) \\
R^{5}
\end{array}\right] \quad\left(\text { for } \gamma_{A}=\gamma_{X}\right) .
$$

Nuclear Dipole-Dipole Interaction

 This interaction provides the main means by which spins- $\frac{1}{2}$ exchange magnetization(I_{2} processes - called cross-relaxation) or dissipate magnetization to the lattice in longitudinal relaxation.

The motion of I relative to S sets up local field fluctuations at S (or, equivalently, modulates E levels of S. There exists a component of this modulation at S transition frequency, 50 the fluctuations can induce tranisitions.

Solomon's Equations

The Solomon equations are a phenomenonogical desciption of the edaxation behawion of the Z-componeents of /, Smaguctization in a two-spin dipolar-coupled sysitem.

$$
\begin{aligned}
& \frac{d}{d f}\left|I_{2}\right|=\frac{1}{T_{1}^{I}}\left(\left|I_{z}\right|-I_{0}\right)-\frac{1}{T_{1}}\left(\left|S_{2}\right|-S_{0}\right) \\
& \frac{d}{d f}\left|S_{z}\right|=\frac{1}{T_{1}}\left(\left|I_{2}\right|-I_{0}\right)-\frac{1}{T_{1}}\left(\left|S_{2}\right|-S_{0}\right)
\end{aligned}
$$

Solomon' s Equations

$$
\text { where } \begin{aligned}
\frac{1}{T_{1}^{I I}} & =W_{0}+2 W_{11}+W_{2} \\
\frac{1}{T_{1}^{S S}} & =W_{0}+2 W_{1 S}+W_{2} \\
\frac{1}{T_{1}^{S}} & =W_{2}-W_{0}
\end{aligned}
$$

Solomon's Equations

Here W s are transition probabilities, related to molecular geometry and motion by timedependent perturbation theory.

$$
\begin{aligned}
& W_{0}=\frac{1}{10} \frac{\mathrm{~h}^{2} \gamma_{I}^{2} \gamma_{S}^{2}}{R^{6}} \frac{\tau_{c}}{1-\left(\omega_{I}-\omega_{S}\right)^{2} \tau_{c}^{2}} \\
& W_{I I}=\frac{3}{20} \frac{\mathrm{~h}^{2} \gamma_{I}^{2} \gamma_{S}^{2}}{R^{6}} \frac{\tau_{c}}{1+\omega_{I}^{2} \tau_{c}^{2}} \\
& W_{1 S}=\frac{3}{20} \frac{\mathrm{~h}^{2} \gamma_{I}^{2} \gamma_{S}^{2}}{R^{6}} \frac{\tau_{c}}{1+\omega_{S}^{2} \tau_{c}^{2}} \\
& W_{Z}=\frac{3}{5} \frac{\mathrm{~h}^{2} \gamma_{I}^{2} \gamma_{S}^{2}}{R^{0}} \frac{\tau_{c}}{1+\left(\omega_{I}+\omega_{S}\right)^{2} \tau_{c}^{2}}
\end{aligned}
$$

where $\quad \tau_{c}=$ rotation correlation time for \dot{R}

$$
\left(\omega_{I} \tau_{c} \approx 1 \text { for } \tau_{c} \approx 10^{-9} S \text { for }{ }^{1} \mathrm{H} \text { at } 500 \mathrm{mHz}\right)
$$

Magnetization Transfer

Reading assignment

Eisenberg and Crothers (EC), Chapter 13, pp. 617-626.

